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1 Introduction

Merryfield and Watson (1991) introduced the Duhamel product for the functions in two variables
as follows :

(f ~ g) (x, y) :=
∂2

∂x∂y

x∫
0

y∫
0

f (x− t, y − τ) g(t, τ)dτdt. (1)

It is a natural extension of the Duhamel product on Hol (D) (see Wigley (1974)):

(f ~ g) (z) :=
d

dz

z∫
0

f (z − t) g(t)dt

=

z∫
0

f
′
(z − t) g(t)dt+ f(0)g(z), (2)

where the integrals are taken over the segment joining the points 0 and z. In Karaev (2018), the
author introduced the Duhamel algebra with respect to the Duhamel product (2) and studied
its some properties and applications.

In the present paper we consider a special Banach space of functions in the unit square
J := [0, 1] × [0, 1] and prove that it is a Banach algebra with respect to the Duhamel product
(1) and study its some properties. Namely, we describe its maximal ideal space. We give some
applications of convolution and Duhamel products (Section 3). Our results are extensions of
the results of the paper Garayev et al. (2016). For the related results, see Garayev et al. (2016);
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Saltan & Özel (2012, 2014) and for other applications of Duhamel product see Dimovski (1990);
Ivanova & Melikhov (2017); Guediri et al. (2015); Gürdal (2009, 2015); Fage & Nagnibida (1987);
Karaev (1987, 2011); Linchuk (2015); Tapdıgoglu (2012, 2013).

We will also consider the classical convolution product ∗ defined by

(f ∗ g) (x, y) :=
x∫

0

y∫
0

f (x− t, y − τ) g(t, τ)dτdt (3)

and characterize the ∗-generators of the algebra C(n)(J) with respect to this convolution product.
Our results have certain interesting applications, namely we are able to exploit the underlying
structure in order to establish an estimate for the solutions of some Volterra type integral
equations in the terms of the kernel function (Section 3).

Recall that C(n)(J) is the space of two variables continuous functions in J with n (n ≥ 2)
partial derivatives and the nth continuous derivatives. We set

∥f∥ = sup
y,x∈J

|f (x, y)|

for any continuous function f on J , and consider the norm

∥f∥n := max
0≤k≤n

∥∥∥∥ ∂k

∂xk1∂yk2
f (x, y)

∥∥∥∥ (4)

for f ∈ C(n)(J), where k = k1 + k2.

2 A Banach algebra structure for C(n)(J) and its
maximal ideal space

In the present section, we study the Banach algebra structure of the space C(n)(J) with respect
to the Duhamel product (1) . We set

C(n)
xy :=

{
f ∈ C(n)(J) : f (x, y) = g(xy) for some single variable function g ∈ C

(n)
[0,1]

}
.

We prove that
(
C

(n)
xy ,~

)
is a Banach algebra and describe its maximal ideal space. We start

with the following lemmas.

Lemma 1. The Banach space C(n) (J) is the commutative Banach algebra with respect to the
Duhamel product (1) with the unity f = 1.

Proof. Let f, g ∈ C(n) (J) , n ≥ 2. Then we have from (1) that

(f ~ g) (x, y) =

x∫
0

y∫
0

∂2

∂x∂y
f (x− t, y − τ) g (t, τ) dτdt

+

x∫
0

∂

∂x
f (x− t, 0) g (t, y) dt

+

y∫
0

∂

∂y
f (0, y − τ) g (x, τ) dτ + f (0, 0) g (x, y) . (5)

Using (4) and (5) it can be proved that (we omit the standards calculus)

∥f ~ g∥n ≤ Cn ∥f∥n ∥g∥n , (6)
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where Cn > 0 is a constant depending only from n. By passing to equivalent norm, from
inequality (6) we obtain that

(
C(n) (J) ,~

)
is a Banach algebra. It is clear that 1~f = f for all

f ∈ C(n) (J) . Also, it is easy to see that f ~ g = g ~ f for all f, g ∈ C(n) (J), i.e.
(
C(n) (J) ,~

)
is a commutative Banach algebra with the unity f = 1. This proves the lemma.

Lemma 2.
(
C

(n)
xy ,~

)
is a commutative Banach algebra with the unity f = 1.

Proof. Since C
(n)
xy is a closed subspace of C(n) (J) and (f ~ g) (xy) ∈ C

(n)
xy for all f, g ∈ C

(n)
xy , it

follows from Lemma 1 that
(
C

(n)
xy ,~

)
is a commutative Banach algebra with the unity f = 1.

Indeed, it follows from the formula (5) that

(f ~ g) (x, y) =

x∫
0

y∫
0

∂2

∂x∂y
f ((x− t) (y − τ)) g (tτ) dτdt+ f |xy=0g(xy)

for all f, g ∈ C
(n)
xy (because ∂

∂xf(0) =
∂
∂yf(0) = 0). So, the proof of Lemma 1 works.

The next lemma plays the central role in proving our main result.

Lemma 3. f ∈ C
(n)
xy is ~-invertible if and only if f |xy ̸= 0.

Proof. In fact, we have for all f, g ∈ C
(n)
xy that

(f ~ g) (x, y) =

x∫
0

y∫
0

∂2

∂x∂y
f ((x− t) (y − τ)) g (tτ) dτdt+ f |xy=0g(xy). (7)

If g is the ~-inverse of f we get

(f ~ g) |xy=0 = f |xy=0g|xy=0 = 1,

where f |xy=0 ̸= 0. Conversely, let f |xy=0 ̸= 0. We set Df (g) := f ~ g for all g ∈ C
(n)
xy . We

prove that Df is an invertible operator on C
(n)
xy . To this aim, write f as f = F + f |xy=0, where

F = f − f |xy=0 ∈ C
(n)
xy and F |xy=0 = 0. Thus, Df = f |xy=0I + DF , where I is the identity

operator on C
(n)
xy . Since f |xy=0 ̸= 0, it suffices to prove that DF is quasinilpotent, i.e., that

σ (DF ) = {0} .
For this purpose, we will show that

lim
k→∞

∥∥∥Dk
F

∥∥∥ 1
k
= 0.

In fact, we define for any f ∈ C
(n)
xy the following usual convolution operator on C

(n)
xy :

(Cfg) (xy) := (f ∗ g)(xy) =
x∫

0

y∫
0

f ((x− t) (y − τ)) g (tτ) dτdt. (8)

Clearly, DF = C ∂2

∂x∂y
F
(see formula (7)). Then, by considering that F |xy=0 = 0, we have

(DF g)(xy) =
∂2

∂x∂y

x∫
0

y∫
0

F ((x− t) (y − τ)) g (tτ) dτdt

=

x∫
0

y∫
0

∂2

∂x∂y
F ((x− t) (y − τ)) g (tτ) dτdt

= C ∂2

∂x∂y
F
g(xy).
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Thus, we get

C2

∂2

∂x∂y
F

g(xy)

=

(
C ∂2

∂x∂y
F

(
C ∂2

∂x∂y
F
g

))
(xy)

=

x∫
0

y∫
0

(
∂2

∂x∂y
F

)
((x− t) (y − τ))

(
C ∂2

∂x∂y
F
g

)
(tτ) dτdt

=

x∫
0

y∫
0

(
∂2

∂x∂y
F

)
((x− t) (y − τ))

 t∫
0

τ∫
0

(
∂2

∂x∂y
F

)
((t− u) (τ − v))

= g(uv)dvdu) dτdt.

Consequently, we obtain ∣∣∣∣(C2
∂2

∂x∂y
F
g

)
(xy)

∣∣∣∣ ≤ ∥F∥2n ∥g∥n
(xy)2

2!
.

So, by induction we finally get∣∣∣∣(Ck
∂2

∂x∂y
F
g

)
(xy)

∣∣∣∣ ≤ ∥F∥kn ∥g∥n
(xy)k

k!
.

On the other hand, we have

∂|α|

∂xα1∂yα2

(
C2

∂2

∂x∂y
F
g

)
(xy)

=

x∫
0

y∫
0

(
∂2+|α|

∂x1+α1∂y1+α2
F

)
((x− t) (y − τ))

 t∫
0

τ∫
0

(
∂2

∂x∂y
F

)
((t− u) (τ − v) g(uv) dvdu

 dτdt

+

(
∂|α|

∂xα1∂yα2
F

)
|xy=0

x∫
0

y∫
0

(
∂2

∂x∂y
F

)
((x− t) (y − τ)) g(tτ)dτdt,

where |α| = α1 + α2 and 1 ≤ |α| ≤ n.

Thus, we obtain∣∣∣∣∣
(

∂|α|

∂xα1∂yα2

(
C2

∂2

∂x∂y
F
g

))
(xy)

∣∣∣∣∣ ≤ ∥F∥2n ∥g∥n
(
(xy)2

2!
+ (xy)

)
≤ ∥F∥2n ∥g∥n

(xy + 1)2

2!
.

Then, assume by induction that∣∣∣∣∣
(

∂|α|

∂xα1∂yα2

(
Ck

∂2

∂x∂y
F
g

))
(xy)

∣∣∣∣∣ ≤ ∥F∥kn ∥g∥n
(xy + 1)k

k!
.
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By differentation we have(
∂|α|

∂xα1∂yα2

(
Ck+1

∂2

∂x∂y
F
g

))
(xy)

=

x∫
0

y∫
0

(
∂2+|α|

∂x1+α1∂y1+α2
F

)
((x− t) (y − τ))

(
Ck

∂2

∂x∂y
F
g

)
(tτ)dτdt+

(
∂2+|α|

∂x1+α1∂y1+α2
F

)
|xy=0

(
Ck

∂2

∂x∂y
F
g

)
(xy).

We conclude that∣∣∣∣∣ ∂|α|

∂xα1∂yα2

(
Ck+1

∂2

∂x∂y
F
g

)
(xy)

∣∣∣∣∣ ≤ ∥F∥k+1
n ∥g∥n

(
(xy)k+1

(k + 1)!
+

(xy)k

k!

)
≤ ∥F∥k+1

n ∥g∥n
(xy + 1)k+1

(k + 1)!
.

Now, from the equality(
∂|α|

∂xα1∂yα2

(
C2

∂2

∂x∂y
F
g

))
(xy)

=

x∫
0

y∫
0

(
∂2+|α|

∂x1+α1∂y1+α2
F

)
((x− t) (y − τ))

(
C2

∂2

∂x∂y
F
g

)
(tτ)dτdt

+

(
∂|α|

∂xα1∂yα2
F

)
|xy=0

(
C2

∂2

∂x∂y
F
g

)
(xy),

we infer that (
∂|α|+1

∂xβ1∂yβ2

(
C2

∂2

∂x∂y
F
g

))
(xy)

=

x∫
0

y∫
0

(
∂2+|α|+1

∂xβ1+1∂yβ2+1
F

)
((x− t) (y − τ))

(
C2

∂2

∂x∂y
F
g

)
(tτ)dτdt

+

(
∂2+|α|

∂x1+α1∂y1+α2
F

)
|xy=0

(
C ∂2

∂x∂y
F
g

)

+

(
∂2

∂x∂y

)
|xy=0 +

(
∂|α|

∂xα1∂yα2

(
C ∂2

∂x∂y
F
g

))
(xy),

where |α| = α1 + α2 and β1 + β2 = |α|+ 1, which leads to(
∂|α|+1

∂xβ1∂yβ2

(
C2

∂2

∂x∂y
F
g

))
(xy) ≤ ∥F∥2n ∥g∥n

(
(xy)2

2
+ xy +

(xy + 1)2

2

)
≤ ∥F∥2n ∥g∥n

(xy + 2)2

2!
.

Thus by induction we obtain∣∣∣∣( ∂j

∂xs∂yj−s

(
Ck

∂2

∂x∂y
F
g

))
(xy)

∣∣∣∣ ≤ ∥F∥kn ∥g∥n
(xy + j)2

k!
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for all j ∈ {2, ..., n}.
So, we have that ∥∥∥∥Ck

∂2

∂x∂y
F
g

∥∥∥∥
n

≤ ∥F∥kn ∥g∥n
(1 + n)k

k!
,

and thus ∥∥∥∥Ck
∂2

∂x∂y
F

∥∥∥∥ 1
k

≤ ∥F∥n
n+ 1

(k!)
1
k

→ 0 (k → ∞) .

This means that C ∂2

∂x∂y
F
is quasinilpotent operator on C

(n)
xy , which implies that Df is invertible

in C
(n)
xy . The lemma is proved.

Now we are ready to state the main result of the paper.

Theorem 1.
(
C

(n)
xy ,~

)
is a unital commutative Banach algebra with maximal ideal space M =

{φ0}, where φ0 : C
(n)
xy → C and φ0 (f) = f |xy=0.

Proof. Let σ(f) denote spectrum of the element f in the Banach algebra
(
C

(n)
xy ,~

)
. It follows

from Lemma 3 that σ(f) = {f |xy=0} and by Gelfand’s theory we see that M = {φ0}. In fact,
the functions which vanish at the point xy = 0 form a maximal ideal. Any other proper ideal
cannot have an element which does not vanish at xy = 0, hence there is only one maximal ideal.

Consequently, the maximal ideal space M of
(
C

(n)
xy ,~

)
consists of one homomorphism, namely

evaluation at xy = 0, and the Gelfand transform is trivial. This proves the theorem.

3 Applications

3.1 The ∗ generators of the radical algebra
(
C

(n)
xy , ∗

)
Recall that for a Banach algebra A the radical R of A is a equal to the intersection of the kernel
of all (strictly) irreducible representations of A. If R = {0} then A is said to be semi-simple
and if R = A, then A is called a radical algebra. Equivalently, A is a radical Banach algebra,
if for every element a ∈ A the associated multiplication operator Ma, Mab := ab (b ∈ A), is
quasinilpotent on A (i.e., σ(Ma) = {0}).

It is classical that

lim
k→∞

∥∥∥f∗k
∥∥∥ 1

k

n
= 0

and so
(
C

(n)
xy , ∗

)
is a radical Banach algebra with respect to the convolution ∗ defined by means

of formula (3) (see also (8)); here f∗k := f

k︷︸︸︷
∗...∗f is the kth iterated convolution of the function

f in
(
C

(n)
xy , ∗

)
. For every f ∈ C

(n)
xy , we have that (f ∗ f) |xy=0 = 0. Also

(f ∗ f ∗ f) |xy=0

=

 x∫
0

y∫
0

f ((x− t) (y − τ))

 t∫
0

τ∫
0

f ((t− u) (τ − v)) f(uv)dvdu|xy=0 = 0.

Thus, it can be easily shown that f∗k|xy=0 = 0, k = 1, 2, ... and hence we see that a necessary

condition for f ∈ C
(n)
xy to generate

(
C

(n)
xy , ∗

)
(i.e., to yield

span {f, f ∗ f, f ∗ f ∗ f, ...} = C(n)
xy
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is that f |xy=0 ̸= 0). However, it is not yet known whether this condition is sufficient (for more
fact about this type question, see Ginsberg and Newman Ginsberg & Newman (1970)). In this

section, we discuss the above stated question in the Banach algebra
(
C

(n)
xy , ∗

)
, namely, we prove

the following theorem, which reduces this question to the case of the subalgebra

C
(n)
xy,0 :=

{
f ∈ C(n)

xy : f |xy=0 = 0
}
.

Theorem 2. Let f ∈ C
(n)
xy be a function such that f |xy=0 ̸= 0. We set F (x, y) :=

x∫
0

y∫
0

f(tτ)dτdt.

Then f is ∗-generator of the Banach algebra
(
C

(n)
xy , ∗

)
if and only if F is a ~-generator of the

subalgebra (C
(n)
xy,0,~).

Proof. In fact, since F (x, y) =
x∫
0

y∫
0

f(tτ)dτdt, we obtain for all g ∈ C
(n)
xy that

(DF g) (xy) =
∂2

∂x∂y

x∫
0

y∫
0

F ((x− t) (y − τ)) g(tτ)dτdt

=

x∫
0

y∫
0

f ((x− t) (y − τ)) g(tτ)dτdt.

This shows that DF = Cf , where Cf is the couvolition operator defined above in formula (8).
Hence, F ~ f = f ∗ f. Also, we have

(F ~ F )~ f = D2
F f = DF (DF f) = DF (Cff) = C2

ff.

By induction we get Ck
f f = Dk

F f for all k ≥ 0.
These equalities show that

span

{
f, f ∗ f, f ∗ f ∗ f, ..., f

m︷︸︸︷
∗...∗f, ...

}

= span

f, F ~ f, F ~ F ~ f, ..., F~...~︸ ︷︷ ︸
m−1

F ~ f, ...


= span

{
Df

(
F~k

)
: k = 0, 1, 2, ...

}
= clos

{
Df

(
span

{
F~k : k = 0, 1, 2, ...

})}
= clos {Df (span {1, F, F ~ F, F ~ F ~ F, ...})} .

So, using the fact that

span {1, F, F ~ F, F ~ F ~ F, ...} = span {λ1: λ ∈C}
⊕span {F, F ~ F, F ~ F ~ F, ...} ,

where ⊕ stands for the direct sum of subspaces, we have that

span {f, f ∗ f, f ∗ f ∗ f, ...} = clos {Df (span {λ1 : λ ∈ C}
⊕span {F, F ~ F, F ~ F ~ F, ...})} . (9)

By considering that f |xy=0 ̸= 0, due to Lemma 3 the Duhamel operator Df is invertible on C
(n)
xy .

On the other hand, by considering that

C(n)
xy = span {λ1 : λ ∈ C} ⊕ C

(n)
xy,0, (10)

the assertion of the theorem now follows from the invertibility of the Duhamel operator Df and
representations (9) and (10). This completes the proof.
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3.2 An inequality for the solutions of the convolution equation

In this subsection, we prove an inequlity for the solutions of the convolution equation (i.e., the
Volterra integral equation)

(CKf) (xy) =

x∫
0

y∫
0

K ((x− t) (y − τ)) f(tτ)dτdt = g(xy) (11)

in terms of the kernel function K(xy) ∈ C
(n)
xy . It is well known that equation (11) has a solution

in the subspace C
(n)
xy for any given function g ∈ C

(n)
xy . We set

Gg :=
{
u ∈ C(n)

xy : u(x, y) is the solution of equation (11)
}
.

It is standard to prove that CK is the Volterra operator, i.e., CK is compact and σ (CK) = {0} .
Let σp (CK) denote the point spectrum of the operator CK (i.e., the set of eigenvalues of CK).

Since CK is compact, σp (CK) = ∅. This implies that g /∈ G for any nonzero g ∈ C
(n)
xy . Let G1

g

denote the unit sphere of the set Gg, G1
g := {u ∈ Gg : ∥u∥n = 1} . The following problem naturally

arizes :
To calculate the distance between g and G1

g, denoted dist
(
g,G1

g

)
.

Our next result estimates dist
(
g,G1

g

)
in terms of the kernel of function K(xy).

Theorem 3. We have:

inf
{
dist

(
g,G1

g

)
: g ∈ C(n)

xy \ {0}
}
≥ C−1

n

∥∥∥∥∥∥
−1 +

x∫
0

y∫
0

K (tτ) dτdt

−1~∥∥∥∥∥∥
−1

n

,

where Cn > 0 is the constant and the symbol −1~ denotes the ~−inverse in the algebra(
C

(n)
xy ,~

)
.

Proof. Denote F (xy) := −1 +
x∫
0

y∫
0

K(tτ)dτdt. Then the double convolution equation

x∫
0

y∫
0

K ((x− t) (y − τ))u(tτ)dτdt = g(xy)

can be rewritten as

∂2

∂x∂y

x∫
0

y∫
0

F ((x− t) (y − τ))u(tτ)dτdt+ u(xy) = g(xy),

or in brief as F ~ u = g − u. Since F |xy=0 = −1 ( ̸= 0) , by Lemma 3, there exists a function

f ∈ C
(n)
xy such that f ~ F = 1, which implies that

f ~ F ~ u = f ~ (g − u) ,

that is u = f ~ (g − u) . Hence by making use of Lemma 2, we obtain from (6) for any u ∈ G1
g

that
1 = ∥u∥n = ∥f ~ (g − u)∥n ≤ Cn ∥f∥n ∥g − u∥n ,

which shows that

∥g − u∥n ≥ 1

Cn

1

∥f∥n
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for all u ∈ G1
g . Since f = F−1~, we infer that

∥g − u∥n ≥ 1

Cn

1

∥F−1∗∥n
= C−1

∥∥∥∥∥∥
−1 +

x∫
0

y∫
0

K(tτ)dτdt

−1~∥∥∥∥∥∥
−1

n

for all u ∈ G1
g . Hence

dist
(
g,G1

g

)
≥ C−1

n

∥∥∥∥∥∥
−1 +

x∫
0

y∫
0

K(tτ)dτdt

−1~∥∥∥∥∥∥
−1

n

. (12)

By considering that g ∈ C
(n)
xy \ {0} is arbitary, inequality (12) implies that

inf
{
dist

(
g,G1

g

)
: g ∈ C(n)

xy \ {0}
}
≥ C−1

n

∥∥∥∥∥∥
−1 +

x∫
0

y∫
0

K(tτ)dτdt

−1~∥∥∥∥∥∥
−1

which proves the theorem.
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